Sarcasm & Its Symptoms

Rating Based Modeling of Reviews Using Neural Networks

Dianna Radpour Vinay Ashokkumar

University at Buffalo The State University of New York

Aim: Sarcasm detection using deep learning

 a method of classifying sarcastic text on a purely non-contextual basis, i.e. inferences and through only impromptu presence of the text and features

DEADED BEAGE BE SAFE. Do not stand, sit, climb or lean on fences. If you fall, animals could eat you and that might make them sick. Thank you.

• Are users more likely to be more or less sarcastic during the holiday season?

• Does higher usage of exclamation points indicate a sarcastic review?

• Do businesses with lower ratings tend to have more sarcastic reviews?

Identification, i.e. sarcasm detection, is one of the most challenging aspects of sentiment analysis.

★ ★ ★ ★ 7/11/2011

I know what you're thinking - one star for the Grand Canyon?!

Let me explain myself before I am stoned to death. T Grand Canyon as a natural wonder rates 5 stars, no brainer. However, the reason I give Grand Canyon National Park only one star as a National Park is the pretty much all of the really awesome things you cou

Sarcastic Feature Selection

Feature	Types
Keyword(s)	"wow" "OMG" "damn"
Punctuation	"!" "()" "…" "…" "
Referentiality	"I" "me" "myself" "we" "us"
Season	"winter" "fall" "summer" "spring"
Superlatives	"worst" "best" "word ending in -est"

 harness the presence of <u>contextual incongruity</u> in user reviews

i.e. sentiment juxtaposition (5-star in rating with a negative sentiment, & vice versa)

preprocessing step is initialized with creating a dictionary that reads through each of the (~4mil) reviews and calculates the # of times for each instance of a categorized feature appearing in that review text

An example from a 4 star review

A hidden gem! Found a beautiful buffet for a great price. Whether you're looking for new or something to refurbish, this place is def worth the look!

```
Enter label : 0
{'!': 2, 'OMG': 0, '""': 0, '..': 0, 'GOD': 0, 'WOW': 0,
'Self_Referentiality_count': 0, 'HAHA':
0, ',': 1, 'label': 0, '()': 0, 'DAMN': 0,
```

'Superlative_count': 0, '.': 1, 'Season': '3', '?':
0}

A simple network

Train network with dataset of purely sarcastic text 15 input nodes, (based on # of variables used for classification), & two hidden layers of 15 hidden nodes each

2 output nodes, i.e. two classification labels: nonsarcastic, or sarcastic

1-star and 3-star rated reviews demonstrated a high level of accuracy, 95% and 96% respectively

Notes on network parameters

built-in optimizer (Adam) used to calculate the cross entropy between the predicted & true label Activation functions used between pairs of levels (Relu for the path from the 1st to the 2nd hidden layer)

Why do we want to know if users are being sarcastic?

- less genuinely indicative of customer attitude
- would definitely get some more valuable feedback on the company at large
- will help to improve the customer experience at large.

- use more manpower to rate the sarcastic nature of the reviews (rather than just us 2)
- Implementation of different machine learning models e.g. Restricted Boltzmann Machines and Hidden Markov Models to generate a time series model for for feature analysis of sarcasm in *real time*

Questions?

diannara@buffalo.edu